Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase.
نویسنده
چکیده
A nonspecific NADPH-dependent carbonyl reductase from human brain (formerly designated as aldehyde reductase 1; Ris, M. M., and von Wartburg, J. P. (1973) Eur. J. Biochem. 37, 69-77) has been purified to homogeneity. The enzyme reduces a number of biologically and pharmacologically active carbonyl compounds. Quinones, e.g. menadione, ubiquinone, and tocopherolquinone are the best substrates, followed by aldehydes containing an activated carbonyl moiety, e.g. 4-nitrobenzaldehyde or methylglyoxal. The enzyme also reduces ketones, e.g. prostaglandins of the E and A class, the anthracycline antibiotic daunorubicin and 3-ketosteroids. During catalysis the pro 4S hydrogen atom of the nicotinamide ring of NADPH is transferred to the substrate. Flavonoids, e.g. quercetin and rutin, indomethacin, ethacrynic acid, and dicoumarol inhibit the enzyme activity. 4-Hydroxymercuribenzoate and iodoacetate inactivate the enzyme. NADPH and substrate do not protect against the loss of activity. Carbonyl reductase consists of a single polypeptide chain with a molecular weight of 30,000. The native enzyme occurs in three molecular forms with similar substrate specificity and inhibitor sensitivity. The isoelectric points of the three enzyme species are 6.95, 7.85, and 8.5. In the presence of coenzyme the isoelectric points are shifted to 5.2 to 5.9. The comparison of structural and enzymic features of carbonyl reductase with other monomeric oxidoreductases suggests a close relationship of carbonyl reductase with prostaglandin 9-keto-reductase and xenobiotic ketone reductase.
منابع مشابه
Prostaglandin 9-ketoreductase from pig and human kidney: purification, properties and identity with human carbonyl reductase.
Prostaglandin 9-ketoreductase has been purified to apparent homogeneity from pig and human kidney with an overall yield of 6%. The enzyme has a molecular mass of 34 kDa, it is present as an active monomer in diluted solution and contains approx. 2 equivalents Zn++/mole enzyme. It is stereoselective for the pro(S) hydrogen of NADPH and reduces the prostaglandin 9-keto group to yield 90% prostagl...
متن کاملPurification and properties of prostaglandin 9-ketoreductase from pig and human kidney. Identity with human carbonyl reductase.
Prostaglandin 9-ketoreductase (PG-9-KR) was purified from pig kidney to homogeneity, as judged by SDS/PAGE using an improved procedure. The enzyme is pro-S stereoselective with regard to hydrogen transfer from NADPH with prostaglandin E2 as substrate and reduces its 9-keto group with approximately 90% stereoselectivity to form prostaglandin F2 alpha. Approximately 8% of the prostaglandin F form...
متن کاملReplacement of threonine-55 with glycine decreases the reduction rate of OsTrx20 by glutathione
Thioredoxins (Trxs) are small ubiquitous oxidoreductase proteins with two redox-active Cys residues in a conserved active site (WCG/PPC) that regulate numerous target proteins via thiol/disulfide exchanges in the cells of prokaryotes and eukaryotes. The isoforms OsTrx23 with a typical active site (WCGPC) and OsTrx20 with an atypical active site (WCTPC) are two Trx h- type isoforms in rice that ...
متن کاملThe aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases.
Aldehyde reductase [EC 1.1.1.2] and aldose reductase [EC 1.1.1.21] are monomeric NADPH-dependent oxidoreductases having wide substrate specificities for carbonyl compounds. These enzymes are implicated in the development of diabetic complications by catalyzing the reduction of glucose to sorbitol. Enzyme inhibition as a direct pharmacokinetic approach to the prevention of diabetic complications...
متن کاملAdaptive changes of redox status in rat brain tissues due to decimeter microwave irradiation
Electromagnetic waves affect living organisms and it is of great interest for wide interaction of new sources with a diversity of frequencies and powers to life of people. In the last few years, many authors have proposed that the biological effect of electromagnetic fields in both the high-frequency and low-frequency ranges are connected with oxidative processes in tissues. Studying the change...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 256 3 شماره
صفحات -
تاریخ انتشار 1981